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Mathematics - Course 321

USE OF LOGARITHMIC SCALED GRAPH PAPER

We have discussed the use of graphs for many purposes in pre
vious courses. In all the cases considered, the graphs have been
plotted on squared paper on which all the divisions are equal.
These divisions may be 1/4" long or 1/6", they may be 1/10" or
1 millimeter, but in all cases they are all equal divisions. The
scales used on such graph paper are known as LINEAR scales in the
same way as the scale on a foot rule is a linear scale. The
scale on a foot rule may be subdivided into inches and further
subdivided into tenths, eighths or sixteenths of an inch, but all
the subdivisions are equal in length.

When linear scales are'used on graph paper, they form a grid
of squares all equal in area. This is why such graph paper is
frequently referred to as "squared" paper. This type of graph
paper is known as LINEAR graph paper or, in order to indicate
that linear scales are being used along both x- and y-axis, the
term LINEAR-LINEAR graph paper may be used.

Linear scales and graph paper have many uses and can be use
ful tools for the solution of mathematical, scientific, or engi
neering problems. There are some instances, however, where the
use of linear scales is limited and where LOGARITHMIC scales have
a distinct advantage. This lesson will describe logarithmic
scales and the circumstances under which they can be usefully
employed.

Logarithmic Scales

On a logarithmic scale the diVisions, instead of being
equally spaced, are made proportional to logarithms of numbers
rather than to the numbers themselves. An excellent example of
a logarithmic scale is that to be found on the scales C and 0 on
a slide rule which are used for multiplication and division.

Figure 1 shows a 5-inch length of line divided linearly into
10 equal parts. The equal parts are numbered from 1 to 10, but
could equally well have been 0.1 to 1.
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The scale goes from 0 to 10. Below the linear scale is
shown the same length of line divided logarithmically. This log
arithmic scale goes from 1 to 10 or 0.1 to 1 or 10 to 100.

Note that the logarithm of 1 (on logarithmic scale) is zero
(on the linear scale). Also, log 2 (on log scale) is 0.3010 (on
linear scale), log 4 (on log scale) is 0.6021 (on linear scale)
and log 10 (on log scale) is 1.0 (on linear scale).

A logarithmic scale going from 0.01 to 0.1, or 0.1 to 1.0,
or 1.0 to la, etc, is said to cover or span one DECADE. A loga
rithmic scale can span several such decades, eg, it could go from
0.01 to 100. Such a scale would be made of 4 decades, each like
the one in Figure 1, and this scale is shown in Figure 2.

1r--O~I.-OT2TTInllTTIII-"Tcl-.iT""T,-n"1T1I1 :i
O 01 0.1 1.0•

Figure 2

20 I I I I I '~bo

It can be seen from Figure 2 that each decade of the scale
is subdivided in exactly the same manner. The scale in Figure 2
spans 4 decades or 4 CYCLES.

Uses of Logarithmic Scales

If the linear scale in Figure 1 is examined, it is clear
that the distance between 0 and 1 is only 1/10 of the total
length of the scale. If this distance is further subdivided into
10 equal parts, each part would be 1/1000 of the full scale value
of 10, ie, each part is 0.1. Such a scale then could be used to
measure to 0.1, since these subdivisions could be read with fair
accuracy. However, it would not be possible to subdivide each
0.1 any further, because the subdivisions would be too small.
Therefore, with a linear scale, fractional value of a measured
quantity cannot be measured with any accuracy.

The same length of scale can, however, be spanned with as
many decades of a logarithmic scale as is desirable. For example,
the same length of scale as in Figure 1 is spanned by 4 decades
in Figure 2. If the scale in Figure 2 went from 0.001 to 10, it
would be easy to measure a 0.001 or 0.002 on this scale, ie,
0.01% of the full scale reading. If more decades were used, the
measurement could be even smaller than this. It must be remem
bered, however, that the distance between 1 and 10 now only occu
pies the top decade and that there is, therefore, a loss of accu
racy with the larger values. We can say that:

The advantage with a logarithmic scale is that it ex
pands the low end of Lhe scale.
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The disadvantage with a logarithmic scale is that it
contracts the high end of the scale with consequent
105s of accuracy.

A logarithmic scale would, therefore, be used where a large
range of values are to be measured. For example, reactor neutron
power may vary from full power (100%) down to zero. During nor
mal operation of a reactor, a linear scale from 0 to 100% neutron
power would be adequate. However, when the reactor is started up,
reactor power may only be 0.001% or less of full power, but it is
important that these low power values be measured. A guage with a
scale as shown in Figure 3, is in fact used on start up from 0.001%
to approximately 10% full power. Above 10%, the linear scale
becomes more accurate.

" Full Power
(Log Scale)
Figure 3

20

%Full Power

(Linear Scale)
Figure 4

80

Note that low values of power, such as 0.001% and 0.01% are
easily read and can be determined much more accurately than on a
linear scale of the same size. However, values of power from 10%
and up could not be measured as accurately as on the linear scale,
ie, 92% full power could be much more accurately determined on
the linear scale.

The only method of obtaining the same accuracy over the
whole range of values is to use a linear scale, the range of
which can be varied with some suitable range switch. In effect,
this replaces one scale with a number of scales, each covering,
say, 1 decade of the logarithmic scale.

Figure 5 shows another example of the use of a logarithmic
scale. The radiation field in a room may normally vary from 0.1
rnr/hr to 10 rnr/hr, but it may well increase up to 100 mr/hr,
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Figure 5

1000 mr/hr, or even higher. The only method of covering such a
range on one scale is to use a 5-decade logarithmic scale as
shown. Normal fields are clearly read and high fields can also
be measured to the accuracy required. It would not be possible
to say, with any certainty, whether the field was 8400 or 8500
mr/hr but such accuracy would not be required.

Logarithmic Graph Paper

Logarithmic graph paper is graph paper which is ruled with
logarithmic divisions or scales instead of linear scale with the
divisions all equal. There are as many different types of loga
rithmic graph paper as there are uses for such graph paper but
they all fall into one of two main groups:

1. SEMILOGARITHMIC or LOG-LINEAR graph paper, in
Which the paper is ruled with a logarithmic scale
in one direction (say, along the y-axis) and with
equal divisions, or a linear scale in the perpen
dicular direction. Examples of such graph paper
are shown in Figures 6 and 7.

2. LOG-LOG graph paper, in which logarithmic spacing
is used in both directions. Log-log graph paper 
has been used in Figure S.

Logarithmic graph paper is further classified by the number
of decades covered by the logarithmic scale. The number of dec
ades covered is known as the number of CYCLES. Thus, 6-cycle
semilog graph paper will have a 6-decade logarithmic scale in one
direction and a linear scale in the other direction. A 4 x 6
cycle log-log graph paper spans 4 decades one way and 6 decades
in a perpendicular direction.
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Reactor Neutron Power Versus Time
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Gamma Dose Rate vs Penetration Depth in NPD
Concrete Shield
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Dose Rate at One Meter from Gamma Source Versus Gamma Ray Energy

Uses of Logarithmic Graph Paper

The selection of graph paper for a particular purpose will
be illustrated by the following examples:

Example 1:

The neutron power of a reactor, after a sudden reac
tivity increase, changes with time according to the
equation:

P = 100 eO. 06t Megawatts
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Plot the graph of the power against the time for 100
sec and determine from the graph the reactor power
after 60 sec.

The calculated values of neutron power are as follows:

Time t (sec) a 10 20 30 40 50 60 70 80 90 100

Power P (Mw) 100 182 332 605 HOD 2010 3670 6650 12200 22100 40000

From the table it may be seen that a linear scale is
required for the time and a 3-cycle log scale for the
power. The graph is shown in Figure 6, page 5.

Power after 100 sec = 40,000 Megawatts.

Note that on semi log graph paper an exponential graph
is a straight line.

Example 2:

The following gamma radiation dose rate measurements
were taken at various distances through the NPD con
crete shield:

Distance into
shield from 50 60 80 120 160 200
inner face (em)

Dose Rate (R/hr) 1 x 10 3

1
3.1 X 10 2 42 0.72 1. 2 x.10- 2 2 X 10-4

The distance scale must again be a linear one but the
dose rate has to be a logarithmic scale covering 7 dec
ades. The graph is shown in Figure 7, page 6.

since the graph is again a straight line, it can be
concluded that the gamma dose rate decreases exponen
tially through the shield.

If the acceptable radiation dose rate outside the
shield is 1 mr/hr or 1 x 10- 3 R/hr, a shield thickness
of 184 ems, or just over 6 ft, would have been suffi
cient.
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Example 3:

The dose rate, at a distance of 1 meter from a source
of 1 millicurie, varies with the energy of the gamma
rays emitted by the source. The following table shows
the dose rate for various energy gamma rays. Plot the
curve of dose rate against gamma energy and estimate
the energy when the dose rate is a minimum.

Gamma Energy
0.01 0.02 0.05 0.07 0.1 0.2 0.5 1.0 2.0 5.0 10.0(MeV)

Dose Rate
(mr/hr) at 0.82 0.19 0.036 0.034 0.045 0.105 0.29 0.55 0.93 1.8 3.11 meter from
source

Both quantities span 3 decades and so we require 3 x 3
cycle log-log graph paper. The graph is shown in
Figure 8, page 7.

From the graph, the dose rate is a minimum when energy
= 0.062 MeV.

Example 4:

The radiation dose received in one hour from a small
gamma source varies inversely with the square of the
distance from the source. Consider a gamma source
which causes an exposure of 400 millirems per hour at
a distance of one foot. At other distances, the dose
rates can be found by using the inverse square law.
A few calculated values follow:

Distance (ft) 1 2 4 10 20 100

Dose Rate 400 100 25 4 1 0.04Millirems/hr

Plotting this graph on log-log paper has two advantages:

1. A wide range of values can be covered.
2. The curve becomes a straight line.

(See Figure 9, page 10)

If the student will try to plot a graph of the above
information on a linear-linear graph sheet, he will
immediately see the difficulties involved.
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ASSIGNMENT

1. (a) What is the basic difference between the divisions on a
logarithmic scale and a linear scale?

(b) What is a decade on a logarithmic scale?

2. State the advantage and disadvantage of a logarithmic scale
over a linear scale.

3. Under what circumstances would a logarithmic scale be used?

4. The following table shows the decrease in neutron power in a
reactor following a trip.

Neutron Power
100 2.2 1.0 0.3 0.058 0.013 0.0028 0.0013 0.001(% Full Power)

Time (Minutes) 0 0.5 1.0 2 4 6 8 10 12

Plot the graph of neutron power against time and determine
from the graph the time required for the neutron power to
decrease to 0.1% of full power.

5. The total weight of heavy water in the air in the boiler
room of a nuclear electric station required to produce a
certain tritium concentration is given in the following
table.

Tritium
Concentration 100 500 1000 5000 10000 50000
(M.P.C.)

Weight DzO (lbl 1. 62 8 16.2 80 162 800

Show graphically how the tritium concentration varies with
the weight of heavy water in the room. From the graph deter
mine the tritium concentration when there are 25 pounds of
DzO in the air in the room
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6. The thermal power in a reactor following a reactor trip
varies with time as shown in the following table.

Time (seconds) 0 0.5 1 5 10 100 1000 10,000

Thermal Power 100 92 67 12.2 7.5 3.9 2.2 1.25
(% full power)

Plot the graph of thermal power against time and, from the
graph, determine how long it takes for the power to drop to
6% of full power.

w. McKee
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