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Mathematics -~ Course 321

USE OF LOGARITHMIC SCALED GRAPH PAPER

We have discussed the use of graphs for many purposes in pre-
vious courses. In all the cases considered, the graphs have been
plotted on squared paper on which all the divisions are equal,
These divisions may be 1/4" long or 1/6", they may be 1/10" or
1 millimeter, but in all cases they are all equal divisions. The
scales used on such graph paper are known as LINEAR scales in the
same way as the sgcale on a foot rule is a linear scale. The
scale on a foot rule may be subdivided into inches and further
subdivided into tenths, eighths or sixteenths of an inch, but all
the subdivisions are equal in length.

When linear scales are 'used on graph paper, they form a grid
of sguares all egqual in area. This is why such graph paper is
frequently referred to as “sguared" paper. This type of graph
paper is known as LINEAR graph paper or, in order to indicate
that linear scales are being used along both x- and y-axis, the
term LINEAR~LINEAR graph paper may be used.

Linear scales and graph paper have many uses and can be use-
ful tools for the solution of mathematical, scientific, or engi=-
neering problems. There are some instances, however, where the
use of linear scales is limited and where LOGARITHMIC scales have -
a distinct advantage. This lesson will describe logarithmic
scales and the circumstances under which they can be usefully
employed.

Logarithmic Scales

On a logarithmic scale the divisions, instead of being
equally spaced, are made proportional t¢ logarithms of numbers
rather than te the numbers themselves. BAn excellent example of
a logarithmic scale is that to be found on the scales C and D on
a slide rule which are used for multiplication and division.

Figure 1 shows a 5-inch length of line divided linearly into
10 equal parts. The equal parts are numbered from 1 to 10, but
could equally well have been 0.1 to 1.
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The scale goes from 0 to 10. Below the linear scale is
shown the same length of line divided logarithmically. This log-
arithmic scale goes from 1 to 10 or 0.1 to 1 or 10 to 100,

Note that the logarithm of 1 (on logarithmic scale) is zero
(on the linear scale). Also, log 2 (on log scale) is 0.3010 {(on
linear scale), log 4 (on log scale) is 0.6021 {(on linear scale)
and log 10 (on log scale}) is 1.0 (on linear scale).

A logarithmic scale going from 0.01 to 0.1, or 0.1 to 1.0,
or 1.0 to 10, etc, is said to cover or span one DECADE. A loga-
rithmic scale can span several such decades, eg, it could go from
0.01 to 100. Such a scale would be made of 4 decades, each like
the one in Figure 1, and this scale is shown in Figure 2.
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It can be seen Irom Figure 2 that each decade of the scale
is subdivided in exactly the same manner. The scale in Figure 2
spans 4 decades or 4 CYCLES.

Uses of Logarithmic Scales

If the linear scale in Figure 1 is examined, it is clear
that the distance between 0 and 1 is only 1/10 of the total
length of the scale. If this distance is further subdivided into
10 equal parts, each part would be 1/1000 of the full scale value
of 10, ie, each part is 0.1. Such a scale then could be used to
measure to 0.1, since these subdivisions could be read with fair
accuracy. However, it would not be pessible to subdivide each
0.1 any further, because the subdivisions would be too small.
Therefore, with a linear scale, fractional value of a measured
quantity cannot be measured with any accuracy.

The same length of scale can, however, be spanned with as
many decades of a logarithmic scale as is desirable. For example,
the same length of scale as in Figure 1 iz spanned by 4 decades
in Figure 2., If the scale in Figure 2 went from (.001 to 10, it
would be easy to measure a 0.001 or 0.002 on this scale, ie,

0.01% of the full scale reading. If more decades were used, the
measurement could be even smaller than this. It must be remem-
bered, however, that the distance between 1 and 10 now only occu-
pies the top decade and that there is, therefore, a loss of accu~
racy with the larger values. We can say that:

The advantage with a logarithmic scale is that it ex-
pands the low end of _he scale.
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The disadvantage with a logarithmic scale is that it
contracts the high end of the scale with consequent
loss of accuracy.

A logarithmic scale would, therefore, be used where a large
range of values are to be measured. For example, reactor neutron
power may vary from full power (100%) down to zero, During nor-
mal operation of a reactor, a linear scale from 0 to 100% neutron
power would be adequate. However, when the reactor is started up,
Yreactor power may only be 0.001% or less of full power, but it is
important that these low power values be measured. A guage with a
scale as shown in Figure 3, is in fact used on start up from 0.001%
to approximately 10% full power. Above 10%, the linear scale
becomes more accurate.

% Full Power % Fuli Power
{Log Scale) -~ (Linear Scale)
Figure 3 Figure 4

Note that low values of power, such as 0.001% and 0.01l% are
easily read and can be determined much more accurately than on a
linear scale of the same size. However, values of power from 10%
and up could not be measured as accurately as on the linear scale,
ie, 92% full power could be much more accurately determined on
the linear scale.

The only method of obtaining the same accuracy over the
whole range of values is to use a linear scale, the range of
which can be varied with some suitable range switch. In effect,
this replaces one scale with a number of scales, each covering,
say, 1 decade of the logarithmic scale.

Figure 5 shows another example of the use of a logarithmic
scale. The radiation field in a room may normally vary from 0.1
mr/hr to 10 mr/hr, but it may well increase up to 100 mr/hr,
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1000 mr/hr, or even higher. The only methed of covering such a
range on one scale is to use a 5-decade logarithmic scale as
shown. Normal fields are clearly read and high fields can also
be measured to the accuracy required. It would not be possible
to say, with any certainty, whether the field was 8400 or 8500
mr/hr but such accuracy would not be reguired,

Logarithmic Graph Paper

Logarithmic graph paper is graph paper which is ruled with
logarithmic divisions or scales instead of linear scale with the
divisions all egual. There are as many different types of loga-
rithmic graph paper as there are uses for such graph paper but
they all fall into one of two main groups: :

1. SEMILOGARITHMIC or LOG-LINEAR graph paper, in
which the paper is ruled with a logarithmic scale
in one direction (say, along the y-axis} and with
equal divisions, or a linear scale in the perpen-
dicular direction, Examples of such graph paper
are shown in Figures 6 and 7. '

2. LOG-LOG graph paper, in which logarithmic spacing
is used in both directions. Log-log graph paper
has been used in Figure 8.

Logarithmic graph paper is further classified by the number
of decades covered by the logarithmic scale. The number of dec-
ades covered is known as the number of CYCLES. Thus, 6-cycle
semilog graph paper will have a 6-decade logarithmic scale in one
direction and a linear scale in the other direction. A 4 x 6
cycle log-log graph paper spans 4 decades one way and 6 decades
in a perpendicular direction.
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Reactor Neutron Power Versus Time




Concrete Shield

Gamma Dose Rate vs Penetration Depth in NPD
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Figure 8

' Dose Rate at One Meter from Gamma Source Versus Gamma Ray Energy

Uses of Logarithmic Graph Paper

The selection of graph paper for a particular purpose will
be illustrated by the following examples:

Example 1:

The neutron power of a reactor, after a sudden reac-
tivity increase, changes with time according to the
equation:

0.06t

P = 100 e Megawatts
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Plot the graph of the power against the time for 100
sec and determine from the graph the reactor power
after 60 sec.

The calculated values of neutron power are as follows:

Time ti(sec)! Q0 {101 20 30| 40 50 60 | 70 80 30 100

Power P(Mw) (100(182(332(605{1100(2010|3670{6650112200({22100/4Q000
From the table it may be seen that a linear scale is
required for the time and a 3-cycle log scale for the
power. The graph is shown in Figure 6, page 5.
Power after 100 sec = 40,000 Megawatts.
Note that on semilog graph paper an exponential graph
is a straight line.

Example 2:
The following gamma radiation dose rate measurements
were taken at various distances through the NPD con-
crete shield:

Distance into

shield from 50 60 80 | 120 160 200
inner face {(cm)
Dose Rate (R/hr) il x 10°3,1 x 10%}42(0.72]1.2 x. 10722 x 10~"

The distance scale must again be a linear one but the

dose rate has to be a logarithmic scale covering 7 dec-

ades,

The graph is shown in Figure 7, page 6.

Since the graph is again a straight line, it can be
concluded that the gamma dose rate decreases exponen-
through the shield. '

rially

If the
shield
of 184
client.

acceptable radiation dose rate outside the
is 1 mr/hr or 1 x 10-°

R/hr, a shield thickness

cms, or just over 6 £+, would have been suffi-




Example 3:
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The dose rate, at a distance of 1 meter from a source
cf 1 millicurie, varies with the

rays emitted by the source.

The

the dose rate for various energy
curve of dose rate against gamma
the energy when the dose rate is

anergy of the gamma
following table shows
Plot the
energy and estimate
a minimum.

gamma rays.

Gamma Energy

(MeV) 0.01l0.02l0.05 lo.07 |o0.2 lo.2 lo.5 !1.0 [2.0 [5.0110.0
Dose Rate
(mr/hr) at 14 9510.19(0.036(0.034]0.045/0.105(0.29|0.55/0.93]1.8] 3.1

1 meter from

Lsource
Both guantities span 3 decades and so we reguire 3 x 3
cycle log~log graph paper. The graph is shown in
Figure 8, page 7.
From the graph, the dose rate is a minimum when energy
= 0.062 MeV.
Example 4:

The radiation dose received in one hour from a small
gamma source varies inversely with the square of the
distance from the source.
which causes an exposure of 400 millirems per hour at
the dose
rates can be found by using the inverse square law.

A few calculated values follow:

a distance of one foot,

Consider a gamma source

At other distances,

JDistance (ft) 1 Y 4 10 20 100
Doge Rate
Millirems/hr 400 100 25 4 1 0.04

Plotting this graph on log-log paper has two advantages:

2

page 10)

1. A wide range of values can be covered.
. The curve becomes a straight line.
(See Figure 9,

If the student will try to plot a graph of the above
information on a linear-linear graph sheet, he w111
immediately see the difficulties involved.
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ASSIGNMENT
{(a) What is the basic difference between the divisions on a
' logarithmic scale and a linear scale?
(b) What is a decade on a logarithmic scale?

State the advantage and disadvantage of a logarithmic scale
over a linear scale.

Under what circumstances would a logarithmic scale be used?

The following table shows the decrease in neutron power in a
reactor following a trip.

Neutron Power
(% Pull Power) 10012.211.0(0.3(0.058|0.013|0.00280.0013(0.001
Time (Minutes) 0 [0.5|1.0] 2 4 6 8 10 12

Plot the graph of neutron power against time and determine
from the graph the time required for the neutron power to
decrease to 0.1% of full power.

5. The total weight of heavy water in the air in the boiler
room of a nuclear electric station required to produce a
certain tritium concentration is given in the following
table.

Tritium j
Concentration 100 500 1000 5000 10000 50000
(M.P.C.)

Weight D,0O (1lb) l1.62 8 16.2 80 162 800

Show graphically how the tritium concentration varies with
From the graph deter-
mine the tritium concentration when there are 25 pounds of
D»0 in the air in the room

the weight of heavy water in the room.

11l -
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The thermal power in a reactor following a reactor trip
varies with time as shown in the following table.

Time (seconds)

0.5

10

100

1000

10,000 -

Thermal Power
{3 full power)

100

|

92

67

12,2

7.5

3.9

1.25

Plot the graph of thermal power against time and, from the
graph, determine how long it takes for the power to drop to

6% of full power.

W. McKee




